Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
EBioMedicine ; 102: 105048, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484556

ABSTRACT

BACKGROUND: Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS: We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS: Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION: Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Middle Aged , Aged , Exome Sequencing , Genetic Predisposition to Disease , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phenotype , Germ Cells/pathology
3.
J Pers Med ; 12(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36579549

ABSTRACT

Germline and tumor BRCA testing constitutes a valuable tool for clinical decision-making in the management of epithelial ovarian cancer (EOC) patients. Tissue testing is able to identify both germline (g) and somatic (s) BRCA variants, but tissue preservation methods and the widespread implementation of NGS represent pre-analytical and analytical challenges that need to be managed. This study was carried out on a multicenter prospective GEICO cohort of EOC patients with known gBRCA status in order to determine the inter-laboratory reproducibility of tissue sBRCA testing. The study consisted of two independent experimental approaches, a bilateral comparison between two reference laboratories (RLs) testing 82 formalin-paraffin-embedded (FFPE) EOC samples each, and a Ring Test Trial (RTT) with five participating clinical laboratories (CLs) evaluating the performance of tissue BRCA testing in a total of nine samples. Importantly, labs employed their own locally adopted next-generation sequencing (NGS) analytical approach. BRCA mutation frequency in the RL sub-study cohort was 23.17%: 12 (63.1%) germline and 6 (31.6%) somatic. Concordance between the two RLs with respect to BRCA status was 84.2% (gBRCA 100%). The RTT study distributed a total of nine samples (three commercial synthetic human FFPE references, three FFPE, and three OC DNA) among five CLs. The median concordance detection rate among them was 64.7% (range: 35.3-70.6%). Analytical discrepancies were mainly due to the minimum variant allele frequency thresholds, bioinformatic pipeline filters, and downstream variant interpretation, some of them with consequences of clinical relevance. Our study demonstrates a wide range of concordance in the identification and interpretation of BRCA sequencing data, highlighting the relevance of establishing standard criteria for detecting, interpreting, and reporting BRCA variants.

4.
Cancers (Basel) ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291952

ABSTRACT

Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients.

6.
N Engl J Med ; 386(26): 2471-2481, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35767439

ABSTRACT

BACKGROUND: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking. METHODS: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses. RESULTS: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire. CONCLUSIONS: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Adenoviridae , Adolescent , Astrocytoma/radiotherapy , Astrocytoma/therapy , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/radiotherapy , Brain Stem Neoplasms/therapy , Child , Child, Preschool , Diffuse Intrinsic Pontine Glioma/mortality , Diffuse Intrinsic Pontine Glioma/radiotherapy , Diffuse Intrinsic Pontine Glioma/therapy , Glioma/radiotherapy , Glioma/therapy , Humans , Infusions, Intralesional , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Quality of Life , Tumor Microenvironment
7.
Gut ; 71(6): 1141-1151, 2022 06.
Article in English | MEDLINE | ID: mdl-34285068

ABSTRACT

OBJECTIVE: Despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). DESIGN: A prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. RESULTS: An initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. CONCLUSION: Implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.


Subject(s)
Bile Duct Neoplasms , Cell-Free Nucleic Acids , Cholestasis , Bile , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cholangiopancreatography, Endoscopic Retrograde , Cholestasis/etiology , Cholestasis/genetics , Constriction, Pathologic/diagnosis , Early Detection of Cancer , High-Throughput Nucleotide Sequencing , Humans , Prospective Studies , Sensitivity and Specificity
8.
J Pers Med ; 11(7)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199109

ABSTRACT

Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.

9.
Clin Chem Lab Med ; 58(8): 1341-1348, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32623849

ABSTRACT

Background Genomic alterations studies in cell-free DNA (cfDNA) have increasing clinical use in oncology. Next-generation sequencing (NGS) technology provides the most complete mutational analysis, but nowadays limited data are available related to the comparison of results reported by different platforms. Here we compare two NGS panels for cfDNA: Oncomine™ Pan-Cancer Cell-Free Assay (Thermo Fisher Scientific), suitable for clinical laboratories, and Guardant360® (GuardantHealth), with more genes targeted but only available in an outsourcing laboratory. Methods Peripheral blood was obtained from 16 advanced cancer patients in which Guardant360® (G360) was requested as part of their clinical assistance. Blood samples were sent to be analyzed with G360 panel, and an additional blood sample was drawn to obtain and analyze cfDNA with Oncomine™ Pan-Cancer (OM) panel in an Ion GeneStudio S5™ System. Results cfDNA analysis globally rendered 101 mutations. Regarding the 55/101 mutations claimed to be included by manufacturers in both panels, 17 mutations were reported only by G360, 10 only by OM and 28 by both. In those coincident cases, there was a high correlation between the variant allele fractions (VAFs) calculated with each panel (r = 0.979, p < 0.01). Regarding the six actionable mutations with an FDA-approved therapy reported by G360, one was missed with OM. Also, 12 mutations with clinical trials available were reported by G360 but not by OM. Conclusions In summary, G360 and OM can produce different mutational profile in the same sample, even in genes included in both panels, which is especially important if these mutations are potentially druggable.


Subject(s)
Cell-Free Nucleic Acids/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Humans
10.
Dis Markers ; 2019: 7954921, 2019.
Article in English | MEDLINE | ID: mdl-30809319

ABSTRACT

Epidermal growth factor receptor (EGFR) mutational testing in advanced non-small-cell lung cancer (NSCLC) is usually performed in tumor tissue, although cfDNA (cell-free DNA) could be an alternative. We evaluated EGFR mutations in cfDNA as a complementary tool in patients, who had already known EGFR mutations in tumor tissue and were treated with either EGFR-tyrosine kinase inhibitors (TKIs) or chemotherapy. We obtained plasma samples from 21 advanced NSCLC patients with known EGFR tumor mutations, before and during therapy with EGFR-TKIs and/or chemotherapy. cfDNA was isolated and EGFR mutations were analyzed with the multiple targeted cobas EGFR Mutation Test v2. EGFR mutations were detected at baseline in cfDNA from 57% of patients. The semiquantitative index (SQI) significantly decreased from the baseline (median = 11, IQR = 9.5-13) to the best response (median = 0, IQR = 0-0, p < 0.01), followed by a significant increase at progression (median = 11, IQR = 11-15, p < 0.01) in patients treated with either EGFR-TKIs or chemotherapy. The SQI obtained with the cobas EGFR Mutation Test v2 did not correlate with the concentration in copies/mL determined by droplet digital PCR. Resistance mutation p.T790M was observed at progression in patients with either type of treatment. In conclusion, cfDNA multiple targeted EGFR mutation analysis is useful for treatment monitoring in tissue of EGFR-positive NSCLC patients independently of the drug received.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , Lung Neoplasms/genetics , Mutation , Aged , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell-Free Nucleic Acids/blood , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use
11.
Nature ; 559(7714): 405-409, 2018 07.
Article in English | MEDLINE | ID: mdl-29995861

ABSTRACT

Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.


Subject(s)
Cellular Reprogramming/genetics , Gene Editing , Genome, Human/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Autoimmunity/genetics , CRISPR-Cas Systems/genetics , Cells, Cultured , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Male , Mice , Neoplasm Transplantation , Protein Engineering , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/cytology
12.
PLoS One ; 13(5): e0197975, 2018.
Article in English | MEDLINE | ID: mdl-29791508

ABSTRACT

Huntington's disease (HD) age of onset (AO) is mainly determined by the length of the CAG repeat expansion in the huntingtin gene. The remaining AO variability has been attributed to other little-known factors. A factor that has been associated with other neurodegenerative diseases is arterial hypertension (AHT). The aim of this study is to evaluate the contribution of AHT to the AO of HD. We used data from a cohort of 630 European HD patients with adult onset collected by the REGISTRY project of the European Huntington's Disease Network. Multiple linear regression and ANOVA, controlling for the CAG repeat number of the expanded allele (CAGexp) of each patient, were performed to assess the association between the AHT condition and the AO of the motor symptoms (mAO). The results showed a significant association between AHT and mAO, especially when we only considered the patients diagnosed with AHT prior to manifesting any HD signs (pre-HD AHT). Remarkably, despite the low number of cases, those patients developed motor symptoms 5-8 years later than normotensive patients in the most frequent CAGexp range (40-44). AHT is an age-related condition and consequently, the age of the patient at the time of data collection could be a confounder variable. However, given that most pre-HD AHT patients included in our study had started treatment with antihypertensive drugs prior to the onset of HD, and that antihypertensive drugs have been suggested to confer a neuroprotective effect in other neurodegenerative diseases, raises the interest in elucidating the impact of AHT and/or AHT treatment in HD age of onset in further studies. A confirmation of our results in a larger sample set would open the possibility to significantly improve HD management.


Subject(s)
Huntington Disease/complications , Hypertension/complications , Age of Onset , Alleles , Female , Humans , Huntington Disease/epidemiology , Huntington Disease/genetics , Male , Middle Aged
13.
J Clin Endocrinol Metab ; 103(1): 35-45, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28938416

ABSTRACT

Context: Monogenic diabetes is thought to account for 2% of all diabetes cases, but most patients receive misdiagnoses of type 1 or type 2 diabetes. To date, little is known about the histopathological features of pancreata from patients with monogenic diabetes. Objective: Retrospective study of the JDRF Network for Pancreatic Organ Donors with Diabetes biorepository to identify possible cases of monogenic diabetes and to compare effects of genetic variants on pancreas histology. Methods: We selected cases of diabetes for genetic testing on the basis of criteria that included young age at diagnosis, low body mass index, negative autoantibody status, and/or detectable C-peptide level. Samples underwent next-generation-targeted sequencing of 140 diabetes/diabetes-related genes. Pancreas weight and histopathology were reviewed. Results: Forty-one of 140 cases of diabetes met the clinical inclusion criteria, with 38 DNA samples available. Genetic variants of probable clinical significance were found in four cases: one each in KCNJ11, HNF1A, GATA6, and LMNA. The KCNJ11 and HNF1A samples had significantly decreased pancreas weight and insulin mass similar to that of type 1 diabetes but had no insulitis. The GATA6 sample had severe pancreatic atrophy but with abundant ß cells and severe amyloidosis similar to type 2 diabetes. The LMNA sample had preserved pancreas weight and insulin mass but abnormal islet architecture and exocrine fatty infiltrates. Conclusions: Four cases of diabetes had putative causal variants in monogenic diabetes genes. This study provides further insight into the heterogeneous nature of monogenic diabetes cases that exhibited clinical and pathophysiological features that overlap with type 1/type 2 diabetes.


Subject(s)
Diabetes Mellitus/pathology , GATA6 Transcription Factor/genetics , Genetic Variation , Hepatocyte Nuclear Factor 1-alpha/genetics , Lamin Type A/genetics , Pancreas/pathology , Potassium Channels, Inwardly Rectifying/genetics , Adolescent , Adult , Child , Diabetes Mellitus/genetics , Female , Genetic Testing , Humans , Male , Pancreas/metabolism , Prognosis , Retrospective Studies
14.
Clin Case Rep ; 5(8): 1277-1283, 2017 08.
Article in English | MEDLINE | ID: mdl-28781842

ABSTRACT

Clinical features are variable in patients with Cornelia de Lange syndrome (CdLS). Milder forms exist with structural maintenance of chromosomes 3 (SMC3) mutations. Inherited milder forms of CdLS are uncommon and may be missed if genetic testing is limited to Nipped-B-like protein (NIPBL) and SMC1A. Parental studies should be pursued if there is a history of learning disabilities and/or dysmorphic features.

15.
J Pediatr Endocrinol Metab ; 29(5): 523-31, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26894574

ABSTRACT

BACKGROUND: We evaluated a methylation-specific multiplex-ligation-dependent probe amplification (MS-MLPA) assay for the molecular diagnosis of transient neonatal diabetes mellitus (TNDM) caused by 6q24 abnormalities and assessed the clinical utility of using this assay in combination with next generation sequencing (NGS) analysis for diagnosing patients with neonatal diabetes (NDM). METHODS: We performed MS-MLPA in 18 control samples and 42 retrospective NDM cases with normal bi-parental inheritance of chromosome 6. Next, we evaluated 22 prospective patients by combining NGS analysis of 11 NDM genes and the MS-MLPA assay. RESULTS: 6q24 aberrations were identified in all controls and in 19% of patients with normal bi-parental inheritance of chromosome 6. The MS-MLPA/NGS combined approach identified a genetic cause in ~64% of patients with NDM of unknown etiology. CONCLUSIONS: MS-MLPA is a reliable method to identify all known 6q24 abnormalities and comprehensive testing of all causes reveals a causal mutation in ~64% of patients.


Subject(s)
Biomarkers/metabolism , DNA Methylation , Diabetes Mellitus/diagnosis , High-Throughput Nucleotide Sequencing/methods , Infant, Newborn, Diseases/diagnosis , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Case-Control Studies , Diabetes Mellitus/genetics , Follow-Up Studies , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Polymerase Chain Reaction , Prognosis , Prospective Studies , Retrospective Studies
16.
Chem Senses ; 41(4): 293-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26809485

ABSTRACT

Olfactory dysfunction is a common complaint among physician visits. Olfactory loss affects quality of life and impairs function and activities of daily living. The purpose of our study was to assess the degree of odor identification associated with mental health. Olfactory function was measured using the brief smell identification test. Depressive symptoms were measured by the Center for Epidemiologic Studies Depression scale. Loneliness was assessed by the de Jong-Gierveld Loneliness Scale. Cognition was measured by a battery of 19 cognitive tests. The frequency of olfactory dysfunction in our study was ~40%. Older subjects had worse olfactory performance, as previously found. More loneliness was associated with worse odor identification. Similarly, symptoms of depression were associated with worse olfaction (among men). Although better global cognitive function was strongly associated with better odor identification, after controlling for multiple factors, the associations with depression and loneliness were unchanged. Clinicians should assess these mental health conditions when treating older patients who present with olfactory deficits.


Subject(s)
Depression/complications , Loneliness/psychology , Olfaction Disorders/complications , Olfaction Disorders/pathology , Aged , Aged, 80 and over , Cognition/physiology , Demography , Female , Humans , Linear Models , Logistic Models , Longitudinal Studies , Male , Mental Health , Middle Aged , Odds Ratio , Risk Factors
17.
Mol Biol Evol ; 33(3): 657-69, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26545921

ABSTRACT

Genetic variation harbors signatures of natural selection driven by selective pressures that are often unknown. Estimating the ages of selection signals may allow reconstructing the history of environmental changes that shaped human phenotypes and diseases. We have developed an approximate Bayesian computation (ABC) approach to estimate allele ages under a model of selection on new mutations and under demographic models appropriate for human populations. We have applied it to two resequencing data sets: An ultra-high depth data set from a relatively small sample of unrelated individuals and a lower depth data set in a larger sample with transmission information. In addition to evaluating the accuracy of our method based on simulations, for each SNP, we assessed the consistency between the posterior probabilities estimated by the ABC approach and the ancient DNA record, finding good agreement between the two types of data and methods. Applying this ABC approach to data for eight single nucleotide polymorphisms (SNPs), we were able to rule out an onset of selection prior to the dispersal out-of-Africa for three of them and more recent than the spread of agriculture for an additional three SNPs.


Subject(s)
Genetics, Population , Models, Genetic , Selection, Genetic , Alleles , Bayes Theorem , Computational Biology/methods , Computer Simulation , Evolution, Molecular , Gene Frequency , Genetic Variation , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
18.
Medicine (Baltimore) ; 94(47): e1892, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26632684

ABSTRACT

Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10; and rs2732614 in KIAA1267-LRRC37A, P = 6.65 × 10) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases.


Subject(s)
Smell/genetics , Adult , Aged , Female , Genome-Wide Association Study , Genotype , Humans , Longitudinal Studies , Male , Polymorphism, Single Nucleotide , Prospective Studies , United States , White People
19.
PLoS One ; 10(7): e0131573, 2015.
Article in English | MEDLINE | ID: mdl-26148071

ABSTRACT

Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.


Subject(s)
Genes, Modifier/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Age of Onset , Aged , Alleles , Exons/genetics , Female , Genotype , Humans , Male , Middle Aged , Trinucleotide Repeats/genetics , Young Adult
20.
PLoS Comput Biol ; 11(3): e1004139, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25735005

ABSTRACT

Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost.


Subject(s)
Algorithms , Founder Effect , Models, Genetic , Pedigree , Software , Female , Genome, Human , Genomics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , South Dakota , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...